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The virtual mass of a closed torus in axisymmetric motion 
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SUMMARY 

An exact inviscid solution for the virtual-mass coefficient of a closed torus in axisymmetric motion is pre- 
sented. It is also shown that the virtual-mass coefficient k for an open torus is bounded by 1.0 < k < 1.0281. 

1. Introduction 

There is currently a growing interest in the hydrodynamics of toriodal shapes for vortex-ring 

models. Toroidal shapes are also frequently encountered in plasma physics, bio-physics and 

hydrodynamics of superfluids. In the hydrodynamical analysis of vortex rings and turbulent 

thermals, an important parameter which has to be considered is the virtual-mass coefficient. 

The effect of the virtual mass was found to be of primary significance in analysing the motion 

of a turbulent thermal in an unstratified environment [ 1 ]. In general, there exists three distinct 

virtual-inertia coefficients for a toms: two added-mass coefficients for motions along the sym- 

metry axis and along the transverse axis, and one added-inertia coefficient for rotation about 

the transverse axis. These hydrodynamical coefficients may be determined from the energy of 

the fluid under the assumption of inviscid and incompressible flow. 

An exact solution for the three added-inertia coefficients of an open toms, was recently 

published [2] by employing a toroidal coordinate system. Open and closed tori are distinguished 

by considering the ratio between the core radius a and the radius of the ring b: for an open 

toms a/b < 1 whereas for closed toms a/b = 1. It should be noted that the closed-toms solution 

can not be obtained as a limiting case of the open-toms solution, since for a/b ~ 1 the series 

solution becomes more slowly convergent as the size of the hole shrinks to zero. 

The closed toms is a shape of particular interest both as a limiting case of the open toms and 

as a fundamental shape in modelling biophysical flows. It is customary in bio-fluid mechanics 

studies to approximate the roulade shape of red blood cells by a circular disk. Dorrepaal et al 

[3] studied the Stokes flow about a closed toms and suggested that a better model for the red 

blood cells be a closed toms rather than a circular disk. It was also shown in the same article 

that the flow properties associated with the closed torus in a steady Stokes flow are vastly 

different from those for a circular disk. A comparison between the viscous drag and torque on 

these two shapes also shows a considerable difference. In addition to the viscous effects, the 

inertia effects also play an important role since the flow in the cardio-vascular system is periodic 
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(pulsating). For these reasons, the virtual mass of  a closed toms moving along its axis of sym- 

metry should be determined. The present paper provides an exact inviscid solution for this 

added-mass coefficient by using the tangent-sphere coordinate system which is particularly 
tailored for the closed toms. 

2. Mathematical analysis 

Following Moon and Spencer [4], an orthogonal tangent-sphere coordinate system ~ ,  v, qJ) is 

defined in terms of the Cartesian coordinates (x, y, z) by the following transformation 

/a cos ff . /a sin ff . v 
z = - -  (1)  x -  /a2 + v ~ ,  Y = /12 + i)2 ' //2 q_ v2 

where oo >/a > 0, oo > v > - oo and 27r > ~k/> 0. The coordinate surface given by eq. (1) may 

be also written as 

x = + u  = +~=  = ! v ~  + y =  (2)  
/a 

implying that the surface/a = const is a closed toms with the symmetry axis in the z-direction. 

The surface/a = 1/(2r), for example, is a closed torus with core diameter equal to 2r. Hence, at 

an infinite distance from the toms/a -+ 0, while at the origin/a ~, ~. 

A normal axisymmetric (independent of ~) solution of the Laplace equation in tangent- 

sphere coordinates is 

F ¢(/a, v) = (/a 2 + v 2) } ~ A (S)/o (s/a) exp (-isv)ds (3) 

where I m denotes the modified Bessel function of the first kind and of order m. Next consider 
a unit-velocity uniform axisymmetric flow about a toms given by/a = 1. The Neumann boundary 

condition 

~¢(u,  v) _ az 
~/a Op ' /a = 1 (4) 

yields the following equation for the complex function A (s): 

2v 
(1 + v2){ 

d 2 
f _  exp (-isv) {A(s) [Io(s) + sll (s) ] - -d~s2 [sI, (s)A(s)]}ds 

= f~_~ 1 d~21~(s  ) dA(s)_Texp(_isu)d s 
Sll(S) ds '---~-s _] 

(5) 
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where in obtaining the above the Riemann-Lebesgue lemma and two integrations by parts have 
been used. Inversion of the Fourier transform given in (5) yields 

1 d [ s 2 ~ ( s ) ~ ] =  1__ f*_~ v exp ( - i s v )d  v 
sI, (s) ds rr ~* (1 + v 2) 

= 2is f 7  cos(sv) = 2 i s  Ko(s) (6) + v  )~ dv 

where K m is the modified Bessel function of the second kind of order m. Integration of equa- 
tion (6) with the proper asymptotic behaviour of A(s) and its first derivative yields 

dA(s) _ is 
ds 27r~ (s) [Is (s)Ko (s) + 12 (s)K, (s)]. (7) 

The virtual mass of the toms in axisymmetric motion is given by [2] 

~=-2r ro  f~_2q~da, v) 3z hvhqj dv, #=  1 (8) 
3# h u 

where 0 is the fluid density and the metric coefficients of the transformation given in (1) are 

1 U (9) 
hv=ht l=  ll2 + v 2 , h~k = t~2 + v 2 • 

Substitution of (1), (3) and (9) into (8) yields 

£ E X = 47r0 o0 ~, A(s)exp(-isv)lo(s)(1 + v 2 ) -  S/2vdvds. (10) 

Integrating (10) by parts we get 

X = ---~--47rpi£ ~ f S ~  A(s)lo(s)exp(-isv)(1 + v2) - 3 / :  sdvds (11) 

E 8 i r rp  A(s)io(s)Kl (S)S2 ds" 
3 .o 

By making use of the following relation, 

! f os2I°(s l(s)ds = 4 s3[J°(s)K'(s) + Ia(s)K2(s)]' (12) 

equation (1 1) is integrated again by parts to give 
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X -2inp ~ dA(s__)_) 
- -3 £ ° 0  ds [I°(s)KI(S) + Ii(s)K2(s)lsads" 

Substituting (7) into (13) and using the Wronskian 

"I(s)  K m +l(s) + / + l(S)Km(S)= s -1 

we obtain the following expression for the virtual-mass coefficient: 

X _ 8 £ ~  s 2 k-  [ 
pV T 3,  2 Jo I~(s----) 

(13) 

(14) 

(15) 

Here V r = rr 2/4 is the volume of the toms p -- 1 and the virtual-mass coefficient denotes the 
ratio between the virtual mass and the fluid mass displaced by the toms. 

To evaluate the second integral in the right hand side of (15) we refer to the Nicholson 
integral expression [5] for the product of two modified Bessel functions, 

Km(S)Kn(S)= 2 f (  Km +n(2Scosht)cosh[t(m - n)]dt 

= 2 f (  K m _ n (2scosht)cosh [t(m + n)] dr, (16) 

and to the following integral [6]: 

f (  f fnK(ct)dt  = 2m_ 1c_ m_ 1r ( 1 + m + n )i,( 1 + m -  n) (17) 
2 2 

where I' denotes the Gamma function. Using (16) and (17) it can be shown that 

1 (½)r  5 (18) f£ f (  dt _ F ( 1 ) F ( ~ ) B  3 3 
(cosht) 3 (-2' 5 )" 

Here B(x ,y )  denotes the Beta function given by 

r (x) r (y)  (19) 
B ( x , y ) -  P(x +y)" 

Substituting (19) in (18) with the proper values for the Gamma function we get 

fos2K (s)ds= 3 (20) - -  ° 

32 

The first integral on the r.h.s, of (15) was first introduced by Watson [7] in his studies con- 
nected with cylindrical wind tunnels. The same integral has also been computed numerically by 

Journal of Engineering Math., Vol. 13 (1979) 1-6 



The virtual mass o f  a closed toms 5 

Smythe [8] using Weddle's integration rule with intervals of  0.1, The result which is correct 

within eight significant figures is 

£ ,  oo S2 

Jo - - d s  = 7.5060642. (21) C(s) 

Finally, substituting (20) and (21) into (15) we find for the virtual-mass coefficient 

k = 1.02806216. (22) 

3. Summary and conclusions 

The closed toms may be considered as a limiting case of  an open toms where the core radius 

is equal to the ring radius. Still another interesting limiting case of  the open toms is the slender 

toms for which the ratio between the core radius and the radius of  the ring is zero. The flow 

about the slender torus is in fact two-dimensional and approximated by the flow about two 

circles an infinite distance apart. Clearly, the virtual-mass coefficient for the slender toms is 

therefore equal to one, as also found by Wu and Yates [9]. From the numerical solution given 

by Miloh et al [2] the added-mass coefficients o f  an open toms were found to be monotonic 

functions bounded below by the corresponding value for a slender toms, and above by the 

value of  a closed toms. By applying a proper extrapolation to the limit a/b -+ 1, it has been sug- 

gested [2] that 1.0 ~< k < 1.0625. The main result of  this paper is the determination of  the 

upper bound of  the virtual-mass coefficient, namely k < 1.0281. Hence for most practical 

purposes the added-mass coefficient of  an open torus in axisymmetrical motion may be taken as 

k = 1. It is also instructive to compare this with the added-mass coefficients of  two contiguous 

equal spheres moving in the direction normal to the line of  centers. It has been found [10] that 

for such a geometry the added-mass coefficient is bounded by 0.5 ~< k -N< 0.6210, where clearly 

the lower bound corresponds to the case where the two spheres are an infinite distance apart 

and the upper bound to the case of  two touching spheres. 
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